

Las Cumbres **Observatory**

LCO resources to aid astronomy in the big data era

Nikolaus Volgenau with contributions from Rachel Street, Jon Nation, Lisa Storrie-Lombardi

Las Cumbres Observatory in 2023

A unique **follow-up** facility for the astronomy community:

- A global network of 2m, 1m and 0.4m robotically controlled telescopes.
- Uniform instrumentation on each telescope class.
- Globally-optimized,
 dynamic scheduling.
 (New schedule every 5 min)
- Specialized observing modes for science programs that need them.
- Rapid delivery of data products. (Archived 10 min after shutter close)

LCO's instrument inventory

LCO's instrument inventory

LCO's instrument inventory

Dynamic Scheduling

Science Collaboration, Global Sky Partners

Science Collaboration institutions have guaranteed observing time on the LCO network. (<u>https://lco.global/observatory/science-collaboration/</u>)

- National Science Foundation (for NOIR Lab)
- St. Andrews University (Scotland)
- Wise Observatory/I-CORE (Israel)
- Instituto de Astrofisica de Canarias (Spain)
- Australian National University
- AURA (for the Chilean National TAC)
- South African Astronomical Observatory
- Institute for Astronomy, University of Hawaii
- University of Texas
- Faulkes Telescope Project (UK)
- National Astronomical Observatories of China

LCO Global Sky Partners (<u>https://lco.global/education/partners/</u>): currently supporting 28 education programs from institutions around the world with >1000 hours of observing time.

- Supported by the Simons Foundation and the Gordon & Betty Moore Foundation.
- Deadline for new 2023 partners was May 26.

Key Projects

"Large, coherent observing programs designed to take maximum advantage of the unique capabilities of the global telescope network." (<u>https://lco.global/science/keyprojects/</u>)

Key projects for 2023-2026:

- Discovery and Follow-up of Optical Counterparts to Gravitational-wave Events (Tel Aviv U.)
- Characterizing the Milky Way's Hidden Populations (LCO)
- Intensive Broadband Reverberation Mapping of Nearby Active Galactic Nuclei (U. St Andrews)
- ▶ The Global Supernova Project (LCO)
- Follow up of TESS transiting planet candidates (MIT)
- Determining the Mass-Ratio Function and the Multiplicity Distribution for Cold Planets with Microlensing (Tsinghua U., Harvard-Smithsonian CfA)
- Constraining the Structure and Evolution of Massive Stars through Multi-Band Asteroseismology (Tel Aviv U.)

Astronomy in the Big Data Era

What does the astronomy community demand to maximize science yield when technology enables an unprecedented increase in data volume and delivery rate?

- Process/filter continuous streams of new targets.
- Monitor many targets in different states simultaneously.
- Select and prioritize targets in real time.
- Observe targets on a range of timescales, cadences.
- Coordinate observations across multiple facilities.
- Manage thousands of observations, TB of data.
- Communicate efficiently with collaborators worldwide.

The ecosystem of infrastructure for astronomy

The ecosystem of infrastructure for astronomy

LCO Support for follow-up observations

Observatory Control System

Open source software for an API-driven observatory At 2 followers Phttps://observatorycontrolsystem.g...

Open Observatory Control System

Observatory Control System Home API Documentation V

Observatory Control System

Open source software for an API-driven observatory

TABLE OF CONTENTS	With the field of astronomy undergoing a revolution in data volume and automation, many observatories	
Home	around the world are beginning to update their systems to take advantage of modern web technologies. However, producing a fully-featured and maintainable Observatory Control System (OCS) is an expensive	
Contributing	undertaking! Las Cumbres Observatory successfully operates a network of 20+ robotic telescopes around the world, driven entirely by APIs. The software that enables this has been bundled up and open-sourced, the goal	
Code of Conduct	of which is to increase the rate of adoption of APIs in astronomical observing and to share the knowledge	
Contributor Guidelines	gained in the process of building the software so that the entire community benefits.	
	What does an API-driven Observatory Control System accomplish?	
Components	Astronomers can:	
Observation Portal	Submit requests to observe a target, track the states of those requests, and cancel requests if their needs	
Configuration Database	have changed	
Adaptive Scheduler	Be notified once their observation is complete	
Science Archive	Download their science data	

https://observatorycontrolsystem.github.io/

HEISING-SIMONS

OpenOCS Goals

Provide a fully customizable "out of the box" observatory management system.

Make all software open-source and provide extensive documentation.

Enable management of:

- user accounts,
- science proposals,
- observation requests and scheduling,
- data product storage and retrieval.

Separate observatory management from site (telescope, instrument) management.

OpenOCS Overview

Python libraries; Django backends.

VueJS component library and sample frontends.

Flexible architecture of mandatory and optional components.

OpenOCS Configuration Database

Example nodes:

- instrument states
- instrument configurations
- instrument binning/readout modes
- overheads

OpenOCS Observation Portal

Functions:

- Login to accounts
- Submit, manage science proposals
- Manage co-investigator permissions
- Compose, submit observation requests
- View observation request results
- Link to data archive

ubmitted Observa	ation Requests		T Fil	ter List •	
ser Info	State Info	#Reques	ts / Pendin	g / Failed / C	omplete
0614 fraser_lewis1 FTP2023A-001	✓ COMPLETED ★ 2023-05-14 00:25:11	15	0	9	6
HW_IC1524_418 hwinkler SAA02023A-001	✓ COMPLETED ★ 2023-05-09 10:18:33	1	0	0	1
0620 fraser_lewis1 FTP2023A-001	✓ COMPLETED ★ 2023-05-05 05:44:45	14	0	8	6
K1004 b clee21 CON2023A-011	✓ COMPLETED ★ 2023-05-03 10:59:28	1	0	0	1
S1019 b clee21 CON2023A-011	✓ COMPLETED ★ 2023-05-02 00:37:22	1	0	0	1
S1024 b clee21 CON2023A-011	✓ COMPLETED ★ 2023-05-01 23:57:26	1	0	0	1
HIP67522_23A victor_jsanchez_bejar IAC2023A-001	✓ COMPLETED ★ 2023-04-30 18:00:13	194	0	75	119
TOI-1227_23A victor_jsanchez_bejar IAC2023A-001	✓COMPLETED ★2023-04-30 09:18:15	146	0	24	122
HW_Mkn304_420 hwinkler KAA02023A-001	✓ COMPLETED ★ 2023-04-25 05:34:03	1	0	0	1
K1005 b clee21 CON2023A-011	✓ COMPLETED ★ 2023-04-14 09:04:00	14	0	5	9
TOI-2457_23A victor_jsanchez_bejar IAC2023A-001	✓ COMPLETED ★ 2023-04-11 23:31:10	71	0	7	64

Home Submit Observation Manage Proposals Planning Tools Help

Observation

Portal

Quick Navigation Submit Observation Anage Proposals Help

Telescope availability history?

Telescope	-3 days	-2 days	-1 day	Today
Siding Spring 0.4m A	49	100	96	62
Siding Spring 0.4m B	49	100	96	66
Siding Spring 2m	49	100	96	66
Siding Spring 1m 1	49	100	98	67
Siding Spring 1m 2	49	100	98	67
Sutherland 0.4m A 1	100	100	100	0
Sutherland 1m 1	100	0	0	0
Sutherland 1m 2	100	0	0	0
Sutherland 1m 3	100	0	0	0
McDonald 1m 1	38	100	100	43
McDonald 1m 2	38	99	99	71
Cerro Tololo	15	94	86	

-

ONS

OpenOCS in the community

LCO uses all OpenOCS applications running in AWS. In 2022:

- > 27 telescopes
- > 8000 user accounts
- > 2000 proposals
- Millions of requests submitted; millions of observations scheduled
- > 33 million data products served

SOAR instruments are supported for AEON.

Other observatories using OpenOCS:

MONET 1.2-meter telescopes

Other organizations testing OpenOCS applications:

- Yunnan Observatory (2.4m telescope)
- South African Astronomical Observatory
- Instituto de Astrofisica de Andalucia

Target (and) Observation Managers

Target Observation Managers (TOMs) are software packages that expedite the administration of (science) campaigns by automating a variety of useful functions: filtering alert streams, submitting new observation requests, etc.

Supernovae

Motivations for a universal "tool kit":

- Although different science campaigns require different analysis tools, they require common basic functions.
- Many code-writing astronomers do not have advanced database or software engineering skills.
- The cost (in time and effort) for each science campaign to write its own TOM is high.

The TOM Toolkit

TOM Toolkit Home Targets - Alerts Observations - Data Non-Localized Events Users

- An open-source, professionally developed software package that enables astronomers to build TOMs easily and customize them for their science needs.
 - Minimal prior knowledge.
 - Python based.
- Provides a set of commonly-used functions.
- Provides well-defined interfaces to science-specific code.
- Creates a community of TOM Toolkit users who develop their own plugins.

TOM Toolkit Demonstration TOM.

The code for this demonstration TOM is in the TOM Demo Github repository

 Central database designed for astronomical programs.

- Central database designed for astronomical programs.
- Interfaces to alert brokers.

TOM Toolkit Home Ta	rgets - Alerts Observati	ons 👻 Da	ta Users					rstreet	Logout
	Query a Broker								
	Create a new query using	MARS	Lasair Scout TNS	ANTARES Gaia			Filter Saved Queries		
	Name	Broker	Created	Last Run	Run	Delete	Broker		
	Galactic Plane query	MARS	2020-10-06 19:10:30	2020-11-10 20:11:22	Run	Delete	~		
							Name contains		
							Name contains		
							Filter Reset		

- Central database designed for astronomical programs.
- Interfaces to alert brokers.
- Interface to data archives.

TOM Toolkit Home	Targets - Alerts Observations - Data Users	rstreet Logout
	Search Catalogs for a Target	
	Term	
	Service	
	V Simbad NED JPL Horizons MPC TNS	

- Central database designed for astronomical programs.
- Interfaces to alert brokers.
- Interface to data archives.
- Submit observations.

- Central database designed for astronomical programs.
- Interfaces to alert brokers.
- Interface to data archives.
- Submit observations.
- Modules for common astronomical displays.

MOP Home Ta	rgets - Alerts Reque	ested Obs	ervations	Data Us						Rachel Street	
MOA-2022- Aladin Finding Chart	BLG-407	Obse Spec	rve O troscopy	bservations	Manage	Data Ma	inage Group	S	Photometry		
Update Target	Delete Target	Photo	ometry					1	Check for new data		
Fit Target Run T	TAP										
Names	MOA-2022-BLG- 407										
Target Type	SIDEREAL		11				٨	1	 R OMEGA_sinistro_ip		
Right Ascension	269.4617		12					i	OMEGA_sinistro_rp Model		
Declination	17:57:50.819 -30.1709 -30:10:15.171		13 14								
Galactic	0.2937	б	15				< ``	 ₽			
Longitude Galactic Latitude	-2.9168	Ma	16	τ ∓ Τ ∓	i i i i	N.	, 1	2022-08-24			
Spectras	0.0		"I	- H		ī ·	•	194 (
TAP_priority	3.6185		18	1 1 1	The second se	1		9816			
Observing_mode	No		19	1 t	T .			- MOL			
Classification	Microlensing PSPL		20					19			
Alive	True		9.72k	9.74k	9.76k	9.78k	9.8k	l 9.82k			
					HJD-245	50000					

Paczyński parameters

TOM Toolkit documentation

Low barrier to entry: https://tom-toolkit.readthedocs.io/

Navigation

Getting Support

Managing Data Customization

LaTeX Generation

through code Deploying your TOM

Online

Troubleshooting your

Observing Facilities and Observations

The Permissions System

Interacting with your TOM

TOM Specific Settings

Example TOMs

Contributing

Releases

Introduction About the TOM Toolkit

TOM

Targets

Brokers

Welcome to the TOM Toolkit's documentation!

Introduction

The TOM (Target and Observation Manager) Toolkit project was started in early 2018 with the goal of simplifying the development of next generation software for the rapidly evolving field of astronomy. Read more <u>about TOMs</u> and the motivation for them.

<u>TOM Toolkit Architecture</u> - This document describes the architecture of the TOM Toolkit at a high level. Read this first if you're interested in how the TOM Toolkit works.

Getting Started with the TOM Toolkit - First steps for getting a TOM up and running.

TOM Workflow - The general workflow used with TOMs.

<u>Programming Resources</u> - Resources for learning the core components of the TOM Toolkit: HTML, CSS, Python, and Django

Frequently Asked Questions - Look here for a potential quick answer to a common question.

 $\underline{\mathrm{Troubleshooting}}$ - Find solutions to common problems or information on how to debug an issue.

Interested in seeing what a TOM can do? Take a look at our <u>demonstration TOM</u>, where we show off the features of the TOM Toolkit.

If you'd like to know what we're working on, check out the TOM Toolkit project board.

TOMs everywhere

	N		Minor plo	anet follow	up portal			Powered by Las Cumbres Observatory	C	
	нс	ME TARGETS	BLOCKS EFF	1 Moon f	name	SEARCH				
Rank	Target Name	Туре	R.A.	Dec.	Mag.	Num.Obs.	Arc	Not Seen (days)	NEOCP Score	Updated?
1	P10BvAn	Candidate	21 37 47.13	+18 19 53.9	21.4	3	0.02	5.183	100	•
2	M70HMQ4	Candidate	17 55 31.02	+13 14 39.9	17.0	з	0.02	4.855	100	•
3	M70HLGY	Candidate	19 45 24.04	+00 50 04.3	17.9	3	0.03	5.643	100	•
4	X50530	Candidate	14 54 29.42	-13 38 45.3	20.9	3	0.03	5.189	100	•
5	P10BzV4	Candidate	16 46 13.30	+01 34 16.4	21.4	3	0.02	1.254	100	•
6	P10BA4F	Candidate	19 47 24.84	-46 30 43.2	20.4	4	0.02	1.220	100	•
7	P10BA7q	Candidate	20 39 17.64	-43 03 52.0	20.7	з	0.02	1.197	100	•
8	P10BA7p	Candidate	20 37 38.35	-40 03 44.8	21.0	з	0.02	1.188	100	•
9	P10BzEy	Candidate	16 58 43.75	+11 13 50.7	21.3	3	0.04	2.277	100	•
10	P10BzQi	Candidate	15 41 55.84	+16 43 42.3	22.3	4	0.04	1.304	100	•
11	P10BzV5	Candidate	17 16 33.44	-02 02 22.3	20.8	3	0.04	1.253	100	•
12	N00beha	Candidate	14 03 49.32	+47 24 58.8	19.6	10	0.59	3.117	100	•
13	P10Bvgt	Candidate	21 04 38.24	+23 19 29.9	20.9	11	1.01	4.206	71	0
14	N00beom	Candidate	12 38 16.87	+26 30 19.4	20.5	6	0.85	2.337	97	•
15	YK9B050	Candidate	21 26 43.69	+05 08 45.1	21.0	11	0.99	1.357	100	\odot

TOMs in 2022:

- SuperNova EXchange (SNEx)
- MOP (Microlensing Observing Project)
- ANTARES TOM
- ExoTOM

- NEO Exchange
- AleRCE TOM
- BlackHole TOM
- Calibration-TOM

Astronomical Event Observatory Network

A partnership to build an extended network of observing facilities to provide greater flexibility and efficiency in follow-up observations.

AE N Guiding principles

Partner observatories retain control of their own time allocations.

Partner observatories do not have to be automated, i.e. robotically controlled.

Partner inclusion should be as simple and as inexpensive as possible.

Partner observatories should adopt a common (software) protocol for requesting observations and sharing information about weather, telescope status, observation status.

> The observation request interface can be UI or API.

Partner observatories can use custom software, the OpenOCS, or the LCO system to enable queue scheduling.

▶ Compatible with various observing modes: flexible, fixed, long-term monitoring, etc.

AE Operations model 1

Partner observatories (SOAR-LCO) interface via a programmatic portal.

- When in AEON mode, SOAR is a node on the LCO network.
- Submission of observations and TOM compatibility provided by LCO portal.
- When not in AEON mode, SOAR is traditionally scheduled.
- SOAR has operators on-site.
- SOAR maintains the GHTS, TSpec data pipelines.

AEN Operations model 2

Partner observatory (Gemini) uses its own scheduling system.

- Observations are queue-scheduled.
- Programmatic submission of observation requests through an API.
- ▶ Gemini observing module plugin for the TOM Toolkit built by Bryan Miller.
- ▶ Gemini operations software being redesigned to accommodate AEON.

HERMES

Hopskotch Enabled Rapid Message Exchange Service (https://hermes.lco.global):

- Hopskotch: "scalable, high-throughput, low-latency platform for handling real-time data streams"
- Any type of astronomical data can be shared.

Brow	r se S	ubmit Message													
		▼ 📈 Search	Terms												
,	TOPIC	\$ TITLE		\leftrightarrow \supset \bigcirc \bigcirc hermes.lco	o.global/#/report-pho	tometry								:0 ☆	@ *
0	gcn.circular	LIGO/Virgo S230531f: Global MASTER-Net observati	tions report	🖌 HERMES Su						ch Repo	ort Rep				
go	gcn.circular	GRB 230525A: CALET Gamma-Ray Burst Monitor det	etection	小 lac	alized Event	Candida	ites Detect	ions	Pointings	Phot	ometry Spe	ctroscopy	Availability		
ago	gcn.circular	LIGO/Virgo/KAGRA \$230529ay: Zwicky Transient Fac	acility observations				.	·							
ago	gcn.circular	LIGO/Virgo/KAGRA S230528a: Zwicky Transient Facil	cility observations		Photom	letry I	Report	ing F	orm						
ago	gcn.circular	LIGO/Virgo/KAGRA \$230527ch: Zwicky Transient Fac	acility observations		Title				т	anic:					
ago	hermes.message	INTEGRAL follow-up of S230531f			Title					hermes test					
0	gcn.circular	LIGO/Virgo/KAGRA S230529ay: Upper limits from CA	CALET observations.		E										
c	gcn.circular	LIGO/Virgo/KAGRA S230529ay: AstroSat CZTI non-d	detection and upper limits		Event ID. Authors:										
C	gcn.circular	LIGO/Virgo S230529ay: Global MASTER-Net observa	vations report		Event ID		Authors							-	
lo	gcn.circular	LIGO/Virgo/KAGRA \$230529ay: upper limits from AC	GILE/MCAL		[
1 2	3 4 » »				Date- ID Obs	Telescope	Instrument	Band Bri	E ightness E	Brightness Error	Brightness Unit		Additional Data Elements:		
		-									AB mag	W	Key Value		
laho	oration h	etween I CO & SCiMN	MΔ		Add Row								Add Row		

Upload Row Data to Main Table

A CSV file with the proper header can be uploaded to automatically fill the above table. Click the button below to copy this header to your clipboard.

Copy CSV Header Choose File No file chosen

Las Cumbres **Observatory**

6740 Cortona Drive, Suite 102, Goleta, CA 93117 805 880 1600 | www.lco.global Nikolaus Volgenau 805 880 1642 nvolgenau@lco.global Thank you!