Undergraduate Astronomy Research/Education at the University of Saskatchewan

Daryl Janzen

"I'm an Astronomer. I study the reason for the seasons and for lunar phases"

– No one

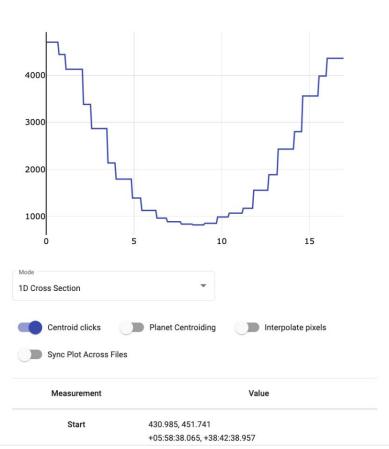
• Introductory astronomy courses should introduce students to astronomy as a scientific discipline

- Introductory astronomy courses should introduce students to astronomy as a scientific discipline
- Requires shifting emphasis from disseminating information for students to absorb, to disseminating information for students to put to use

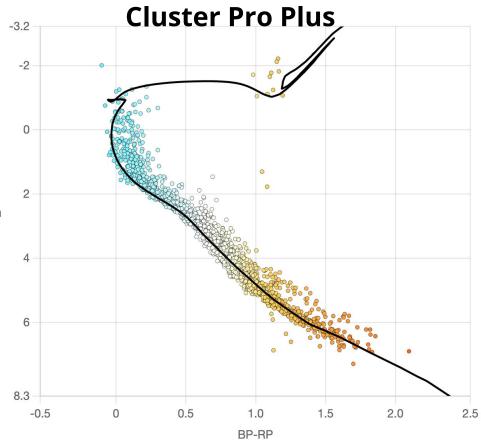
- Introductory astronomy courses should introduce students to astronomy as a scientific discipline
- Requires shifting emphasis from disseminating information for students to absorb, to disseminating information for students to put to use
- Rather than just teaching concepts, students learn the messy details of where those concepts come from in practice

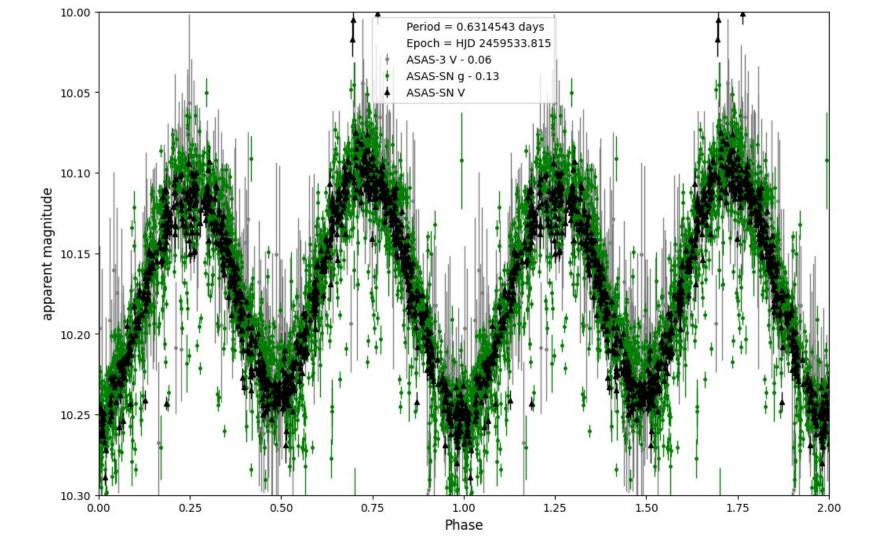
- Introductory astronomy courses should introduce students to astronomy as a scientific discipline
- Requires shifting emphasis from disseminating information for students to absorb, to disseminating information for students to put to use
- Rather than just teaching concepts, students learn the messy details of where those concepts come from in practice
- Requires robotic telescopes with pipelines that have computers do everything they can do so students get to think through the interesting bits

- Introductory astronomy courses should introduce students to astronomy as a scientific discipline
- Requires shifting emphasis from disseminating information for students to absorb, to disseminating information for students to put to use
- Rather than just teaching concepts, students learn the messy details of where those concepts come from in practice
- Requires robotic telescopes with pipelines that have computers do everything they can do so students get to think through the interesting bits
- Incidentally AI-proof pedagogy


The Course

- First-year stars class for STEM majors
- ~120 students
- 12-week course, 4 hours/week lecture/tutorial
- Replaced weekly lab/problem assignment structure with weekly practical assignments and drop-in help desk in computer lab (open 9 hours/week)
- Three research projects: double stars, clusters, and periodic variables
- Students chose 2 of 3 'publications' for their research




Plotter

Click once on the image to set the measurement's start point, move your mouse, then click a second time to set the end point.

Journal of Double Star Observations

Current Issue About the JDSO Archives Errata (As Of: 09-03-2020) JDSO Index Publication Guide Search

Journal of Double Star Observations

Volume 19 Number 2 - (Download entire issue)

Inside this issue:

Speckle Analysis and Lucky Imaging of Close Double Stars with a 1.2 m Cassegrain Telescope in 2022 Rainer Anton and Johannes M. Ohlert

Automated Speckle Interferometry of Known Binaries

Nick Hardy, Leon Bewersdorff, David Rowe, Russell Genet, Rick Wasson, James Armstrong, Scott Dixon, Mark Harris,

aavso.org/vsx/

G 🔍 🖞 🛣

The International Variable Star Index

Now cataloging 2,277,311 variable stars

-	1
Search	
Submit	
Register	
Log In	

https://sites.usask.ca/astro/

🖓 🗉 🖺

IC 2714: "THE RIP-TORN CLUSTER"

USASK

ASTRONOMY

	Lecture	Assignment
Week 1	Definitions, Celestial Sphere, Science	Intro to Skynet
Week 2	Scientific Revolution and Newtonian gravity	Intro to Afterglow
Week 3	Telescopes, seeing, parallax, light/blackobdy	Double star selection/observation
Week 4	Stellar spectra, T, L, m/M, E(B-V), R, M	Double star analysis
Week 5	Atoms/spectra, measurements, HRD, M-L	Skynet parallax lab
Week 6	The Sun: p-p, solar model, neutrinos	Cluster selection/obs, MIDTERM
Week 7	Nebulae and star formation, protostar evol	Double star paper
Week 8	Main Seq., Giant branch, HB/AGB, [Fe/H], clusters	Cluster analysis
Week 9	Pulsators, Binaries, low mass death	Skynet RRL/Cepheid/SN la lab
Week 10	Core collapse SN, types, SN Ia, neutron/pulsars	Periodic variables analysis
Week 11	Magnetars, XRB, Black holes, GRB, etc	Skynet MW rotation (pulsars next year?)
Week 12	Cosmology crash course	Research Publications (choose 2/3)

Research Products

JDSO papers (13 papers/72 students)

Cluster blogs (70 individual blog posts)

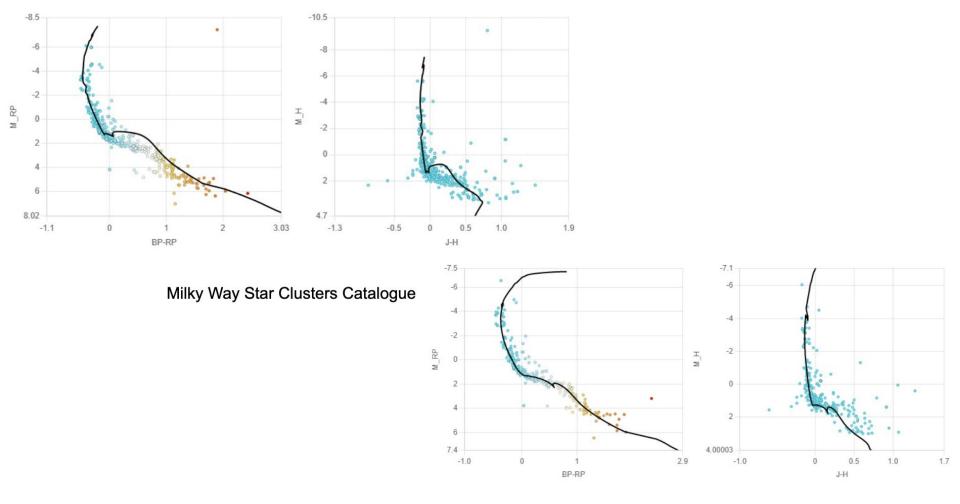
VSX revisions (~40 revisions submitted)

Remarks: Double Stars Project

- Excellent intro to practical aspects of observing: celestial sphere, seeing/resolution, dynamic range in digital imaging, modelling trends, statistical measurement and uncertainty
- Great intro to spreadsheets
- May update/simplify some of the analysis
- Need better emphasis on the fact that most physical doubles aren't binaries
- Should draw connection to clusters and evaporation/Galaxy evolution
- Should have students recap/reflect on practical learning gains

Remarks: Clusters Project

- Tool goes beyond 'cartoon' version of cluster evolution common in textbooks:
 - Field stars and proper motion/distance
 - Unresolved binaries and the main sequence
 - Blue stragglers and various stages of giant evolution
 - Emphasises HR Diagram as quantitative graph of colour and magnitude, aspects that are qualitatively apparent in tri-colour images
 - Visually represent the effects of reddening


ISM-Reddened NGC 3293

De-Reddened NGC 3293

Remarks: Clusters Project

- Tool goes beyond 'cartoon' version of cluster evolution common in textbooks:
 - Field stars and proper motion/distance
 - Unresolved binaries and the main sequence
 - Blue stragglers and various stages of giant evolution
 - Emphasises HR Diagram as quantitative graph of colour and magnitude, aspects that are qualitatively apparent in tri-colour images
 - Visually represent the effects of reddening
 - The importance of age AND metallicity, and curve-fitting
- Comparison with published results

My Photometry Plotted Values

Remarks: Clusters Project

- Tool goes beyond 'cartoon' version of cluster evolution common in textbooks:
 - Field stars and proper motion/distance
 - Unresolved binaries and the main sequence
 - Blue stragglers and various stages of giant evolution
 - Emphasises HR Diagram as quantitative graph of colour and magnitude, aspects that are qualitatively apparent in tri-colour images
 - Visually represent the effects of reddening
 - The importance of age AND metallicity, and curve-fitting
- Comparison with published results
- Currently lacking catalogue that students can contribute to, so run with informal blog

Remarks: Variable Stars Project

- Great project for learning about all the messiness of variable star classification
- Contribution to AAVSO VSX
- Scalability of VSX is an issue, not easy to actually revise