Quasars appear to evolve with distance: the farther away one gets, the brighter they are. This could indicate that quasars extinguish over time or it could be the result of a simple observational bias masking a different reality: that gigantic quasars evolving very quickly, most of them already extinct, coexist with a quiet population that evolves at a much slower rhythm but which our technological limitations do not yet allow us to research.
To solve this riddle it was necessary to look for low luminosity quasars at enormous distances and to compare their characteristics with those of nearby quasars of equal luminosity, something thus far almost impossible to do, because it requires observing objects about a hundreds of times weaker than those we are used to studying at those distances.
The tremendous light-gathering power of the GTC telescope, has recently enabled Sulentic and his team to obtain for the first time spectroscopic data from distant, low luminosity quasars similar to typical nearby ones. Data reliable enough to establish essential parameters such as chemical composition, mass of the central black hole or rate at which it absorbs matter.
Read the full story at IAA News