The asynchronous polar V1432 Aquilae and its path back to synchronism

A paper from the Society for Astronomical Sciences 33rd Annual Symposium on Telescope Science held last week in Ontario, California.

V1432 Aquilae is the only known eclipsing asynchronous polar. In this respect it is unique and therefore merits our attention. We report the results of a 15-year campaign by the globally distributed Center for Backyard Astrophysics to observe V1432 Aql and investigate its return to synchronism. Originally knocked out of synchrony by a nova explosion before observing records began, the magnetic white dwarf in V1432 Aql is currently rotating slower than the orbital period but is gradually catching up. The fortuitously high inclination of the binary orbit affords us the bonus of eclipses providing a regular clock against which these temporal changes can be assessed. At the present rate, synchronism should be achieved around 2100. The continually changing trajectory of the accretion stream as it follows the magnetic field lines of the rotating white dwarf produces a complex pattern of light emission which we have measured and documented, providing comprehensive observational evidence against which physical models of the system can be tested.

Authors: David Boyd, Joseph Patterson, William Allen, Greg Bolt, Michel Bonnardeau, Tut, Jeannie Campbell, David Cejudo, Michael Cook, Enrique de Miguel, Claire Ding, Shawn Dvorak, Jerrold Foote, Robert Fried, Franz-Josef Hambsch, Jonathan Kemp,Thomas Krajci, Berto Monard, Yenal Ogmen, Robert Rea, George Roberts, David Skillman, Donn Starkey, Joseph Ulowetz, Helena Uthas, Stan Walker

Read the paper on astro-ph